weak bosons composite H. Fritzsch Munich LMU

LHC

<u>ATLAS at Large Hadron Collider / CERN</u>

Standard Model

quarks + leptons weak bosons

pointlike

SLAC – DESY LEP - Tevatron

radius of electron: radius of u/d-quark: $\leq 10^{-17} cm$

STANDARD MODEL

! Mass of Proton !

? Mass of Weak Boson ?

mass

field energy of gluons and quarks

 $E(gluons) + E(quarks) = M_p c^2$ 30% 70 %

spontaneous symmetry breaking

"Higgs" - mechanism

mass generation confinement

Example rho – mesons

"Higgs" mechanism

~ 1960: J. J. Sakurai rho mesons elementary gauge bosons

~ 1964 mass generation for rho mesons

"Higgs" mechanism

2 x 2 scalars

mass M

massless rho - mesons

"Higgs" - mechanism

"Higgs" - scalar

mass M

massive rho - mesons

ρ - meson in QCD :

quark - antiquark - gluons 🗰

 $(\overline{q}q)$) =

 $M_{\rho} \approx 760 \quad MeV$ $= const. \bullet \Lambda_{c}$

rho - mesons

universality coupling constants

quarks duality diagrams current algebra vector meson dominance

old references: Bjorken (1977) Fritzsch and Mandelbaum (1981) Abbott and Farhi (1981) Barbieri and Mohapatra (1981) Fritzsch, Kogerler and Schildknecht (1982) Lüst (1985) Calmet and Fritzsch (2000)

new: H. Fritzsch 2010 - arXiv: 1010.1428 2011 - arXiv: 1105.3354 2012 - arXiv: 1203.5600

masses of composite Weak bosons P analogy

Dynamical mixing of rho meson and photon:

mixing parameter m

 $m = e \frac{F_{\rho}}{M_{\rho}}$

 $\left\langle 0 \left| \frac{1}{2} \left(\overline{u} \gamma_{\mu} u - \overline{d} \gamma_{\mu} d \right) \right| \rho_0 \right\rangle = \varepsilon_{\mu} M_{\rho} F_{\rho}$

 F_{ρ} : decay constant

$F_{\rho} \approx 220$ MeV

m: mixing parameter

 $M_{\rho^0}^{\ 2} = \frac{M_{\rho^+}^{\ 2}}{1-m^2} = \frac{3.1 \text{ MeV}}{1-m^2}$

Constituents of W-bosons

lefthanded fermions

haplons confined by gauge force

chiral gauge theory

Gauge group of QHD

Gauge group of QHD:

n SU(3)

duality diagram

QHD

Universality of coupling constants

QHD

$SU(2)_L \otimes SU(2)_R \otimes U(1)$

$(SU(3)_c \otimes U(1)) \otimes SU(2)_L \otimes SU(2)_R$

 $\begin{pmatrix} \nu & U_r & U_g \\ L & D_r & D_g \end{pmatrix}$ U_b $SU(4)_{c,l} \succ SU(3)_c \otimes U(1)$

gauge group of QHD

m: mixing parameter

 $M_{\rho^0}^{\ 2} = \frac{M_{\rho^+}^{\ 2}}{1-m^2} = \frac{3.1 \text{ MeV}}{\text{m} = 0.09}$

with photon 2

m: mixing parameter

Standard Model

 M_{W}^{2} M_Z^2 $-\sin^2\theta$

 $M_z^2 = \frac{M_w^2}{1 - m^2}$

Standard Model

 $M_z^2 = \frac{M_W^2}{1 - \sin^2 \theta_w}$

 $\sin \theta_w = m \approx 0.485$

QCD + QED

QHD+ QED

W decay constant

 $\left\langle 0 \left| \frac{1}{2} (\overline{\alpha} \gamma_{\mu L} \alpha - \overline{\beta} \gamma_{\mu L} \beta) \right| Z \right\rangle = \varepsilon_{\mu} M_{W} F_{W}$

experimental data:

 $M_W = 80.4...GeV$ $M_Z = 91.19...GeV$ $F_W = 124.6...GeV$ $\sin^2 \theta_W = 0.2315$ $\alpha = \frac{e^2}{4\pi} \cong \frac{1}{128.9}$ ≅ 0.3122

 $F_{\rho} \approx \Lambda_c \approx 220$ MeV

 $F_W \approx 0.125 _ TeV \square \Lambda_L$

$\Lambda_L \approx 0.13 \Leftrightarrow 1.0 _TeV$ uncertainty: gauge group of QHD

 $F_W \approx 0.130 \ TeV$ $\Lambda \approx 0.13 \ -7eV$

$F_W \approx 0.13 \quad TeV$ $\Lambda_{h,L} \approx 0.13 \quad TeV$

 $0.12 \prec \Lambda_{h,L} \prec 1.0 \quad TeV$

New: isoscalar

 $\left(\overline{\alpha}\alpha + \overline{\beta}\beta\right)$

Present lower limit on X-mass:

~400 GeV

Coupling of X to leptons and quarks:

Coupling of Z - boson

X – decay into muons → Z – decay into muons:

 $\Gamma(Z \Longrightarrow \mu^+ \mu^-) \cong 84 \quad MeV$

 $\Gamma(X \Longrightarrow \mu^+ \mu^-) \cong 3.6 \quad GeV$

X-decays -> leptons quarks

 $\int (X \to \mu^{+} \mu^{-}) \cong \int (X \to e^{+} e^{-})$ $\simeq \int (X \rightarrow \overline{v_e} v_e)$

 $\Gamma(X \to \overline{u}u) \cong \Gamma(X \to \overline{J}U)$ $\approx 3 \times \Gamma(X \rightarrow \mu^{+}\mu^{-})$

1, W+, Z ₩, Z Expected: $\int (X \to W^+ W^-)$ $\Gamma(X \rightarrow ZZ)$ $\int (X \rightarrow \mu^{+}\mu^{-})$

Summation Total width of X: 200 GeV

Total width of Z: 2.5 GeV

Discovery of Xboson: search for decay into weak bosons

 $\Rightarrow Z + Z$

complexities Of strong interactions $\sim 1 \text{ GeV}$

 $\Lambda_h \propto 0.3 _ TeV$ $= 1000 \cdot \Lambda_c$

complexities of **OHD** interactions ~ 1 TeV

EXCITED WEAK BOSONS

I(J) I:SU(2) J: angular momentum

p-wave bosons three SU(2) singlets

 $S = \frac{1}{\sqrt{2}} \left(\overline{\alpha} \,\alpha + \overline{\beta} \,\beta \right)$

S(0) = 0 (0) S(1) = 0 (1)S(2) = 0 (2)

p-wave mesons (QCD)

scalar:

vector:

tensor:

σ(~ 700)

h₁(1170)

 $f_2(1270)$

isospin triplets in OCD

scalar:

vector:

tensor:

 $a_0(980)$ $b_1(1235)$ $f_{2}(1270)$

$S(0) \xrightarrow{W} W^{+}W^{+}W^{-}$

J(U)

 $S(0) \Longrightarrow W^{+} + "W^{-}"$ $S(0) \Longrightarrow "Z" + Z$

$S(0) \Rightarrow W^{+} + W^{-}$ $S(0) \Rightarrow W^{-} + W^{+}$ $S(0) \Rightarrow W^{3} + W^{3}$

 $W^3 = \cos \theta_w Z + \sin \theta_w \gamma$

100 %

59 %

Experiment

 $\frac{S(0) \Rightarrow \gamma + \gamma}{S(0) \Rightarrow W^{+} + W^{-}} \approx 0.04 \pm 0.015$

Expected < S(0): 0.05

"Higgs" -boson

 $H \Longrightarrow \gamma + \gamma$ ≈ 0.015 $H \Longrightarrow W^+ + W^-$

126 GeV "Higgs" boson

decay into leptons electrons : muon : tauons 0.00002 : 1:286

126 GeV S(0)

electrons : muon : tauons

decays of S(1) M = 320 Gev $S(1) \Longrightarrow W^+ + W^ S(1) \Longrightarrow Z + Z$ $S(1) \Longrightarrow Z + Z + \gamma$ $S(1) \Longrightarrow Z + Z + Z$ $S(1) \Longrightarrow Z + \gamma + \gamma$ $S(1) \Longrightarrow \gamma + \gamma + \gamma$

$S(1) \Rightarrow \chi$ Landau-Yang-Theorem

three

lepton-quark

families

U 11 С C C S S S t 1 1 h

? fundamental ? fermions

? 12 masses ?
? 10 mixing parameter ?

leptons and quarks

2 composite

haplons also inside leptons and quarks

simplest theory:

Igptons - quarks

(fermion + scalar)

lepton-quark-family

 $\begin{pmatrix} v & U_r & U_g & U_b \\ L & D_r & D_g & D_b \end{pmatrix} \begin{cases} SU(2) \end{cases}$

SU(4)

inside quarks

 $(\alpha l): \nu_e - \nu_\mu - \nu_\tau$ $(\beta l): e - \mu - \tau$

 $(\alpha r): u_r, c_r, t_r$ βr): d_r, s_r, b_r red uarks 9

bound states of two scalars

weak bosons leptons quarks =>composite

